Chemistry Laboratory Manual for 1st /2nd Semester Diploma Engg. students

Govt. Polytechnic Sambalpur(Rengali)

Department of Maths & Science

Prepared by – Supritika Sundi Lecturer in chemistry

EXPERIMENT-1

AIM OF THE EXPERIMENT

Preparation and study of properties of Carbon Dioxide

Objectives of the experiment:

At the end of this experiment, the students will be able to:

- Specify the chemicals, which are used to prepare CO₂ gas in the laboratory.
- Know the physical and chemical properties of the gas. •

APPARATUS REQUIRED

- 1. woulf's bottle 4. Rubber cork
- 2. thistle funnel 5. Gas jar with lid
- 6. Few test tubes 3. delivery tube

CHEMICALS REQUIRED

- 1. Marble chips
- 4. Magnesium ribbon 5. Lime water
- 2. Dil. Hydrochloric Acid 3. Litmus paper
- 6. Phenolphthalein solution

THEORY:

In laboratory carbon dioxide gas is prepared by the action of dilute hydrochloric acid upon marble chips(CaCO₃) in a woulf's bottle. It is collected by upward displacement of air. Carbon dioxide is acidic in nature.

CHEMICAL EQUATIONS:

$$CaCO_3 + 2HCI \longrightarrow CaCl_2 + CO_2 + H_2O$$

LABORATORY DIAGRAM:

PROCEDURE:

- 1. Take a woulf's bottle fitted with rubber cork, thistle funnel and delivery tube. Examine that it is perfectly airtight. In case of air leakage, use melted paraffin wax or grease.
- 2. Introduce few small marble chips into the woulf's bottle by opening one of its mouths.
- 3. Now pour some water into the woulf's bottle through the thistle funnel so as to cover the marble chips.
- 4. Insert the thistle funnel more into the woulf's bottle such that its extreme end remains inside the water.
- 5. Now add little quantity of the dil. Hydrochloric acid through the thistle funnel. Do not add excess amount of acid at a time to exhaust the marble chips before the experiment is completed.
- 6. Then collect the carbon dioxide gas in the gas jar by upward displacement of air. Test the collected gas in the jar by showing a burning splinter at the mouth of gas jar.
- 7. Study the properties of carbon dioxide gas by collecting the gas in different test tubes.

OBSERVATION:

SL.	EXPERIMENT	OBSERVATION	INFERENCE
1.	Observe the colour of		
	the gas		
2.	Observe the odour of		
	the gas		
3.	Enter a glowing splinter		
	into a test tube full of		
	CO2 gas.		
4.	Invert the test tube full		
	of CO2 gas over another		
	empty test tube		
	containing air. Then add		
	little lime to the test		
	tube containing air		
	initially.		
5.	Collect the gas in a test		
	tube half-filled with		
	water. Shake the test		
	tube vigourously by		
	putting the thumb at its		
	mouth and remove the		
	thumb and observe the		
	level/volume of water		
	in the test tube.		

Physical properties

CHEMICAL PROPERTIES

SL.	EXPERIMENT	OBSERVATION	INFERENCE
1.	A piece of moist blue		
	litmus paper is shown to		
	the gas.		
2.	Pass the CO2 gas through		
	2-3 ml of dilute solution		
	of sodium		
	hydroxide(NaOH)		
	containing one drop of		
	phenolphthalein solution.		
3.	a) Pass the gas		
	through lime		
	water.		
	b) Pass the gas in		
	excess.		
	c) Boil the solution.		
4.	Introduce a burning		
	magnesium ribbon into a		
	test tube /gas jar		
	containing carbon		
	dioxide gas.		

SAFETY AND PRECAUTIONS

- 1. The fittings should be airtight.
- 2. The end of thistle funnel must be/remain deep inside the solution.
- 3. The shorter end of the delivery tube should remain above the surface of the solution in the woulf's bottle.
- 4. The longer end of the delivery tube must reach the bottom of the gas jar.
- 5. Addition of excess of dil.hydrochloric acid should be avoided.
- 6. The gas should be collected after removing air from the apparatus.

VIVA-VOCE

- 1. What is the nature(acidic/basic) of carbon dioxide gas?
- 2. Which chemicals are used for the preparation of carbon dioxide gas?
- 3. What are the observations when carbon dioxide gas is passed through the lime water? Name the compounds which leads to the following observations.
- 4. CO₂ is than air.(heavier/lighter)
- 5. CO2 gas is collected _____ displacement of air.(downward/upward)
- 6. Lime water turns milky by passing CO₂ gas through it due to formation of ——— Give equation
- 7. The milkiness of the limewater disappears by passage of excess CO_2 gas due to the formation of ______. give equation
- 8. What happens when a burning magnesium ribbon is introduced in the gas jar containing carbon dioxide gas? Give equations?
- 9. State industrial uses of carbon dioxide gas.

Experiment-2

Aim of the experiment

Preparation and study of properties of NH₃ gas

APPARATUS REQUIRED

- 1. Hard glass test tube
- 2. Delivery tube
- 3. Gas jar
- 4. Card cover
- 5. Glass jar containing CaO(quick lime)
- 6. Bunsen burner
- 7. Rubber cork
- 8. Clamp stand

CHEMICALS REQUIRED

- 1. Ammonium Chloride, NH₄Cl
- 2. Calcium Hydroxide, Ca(OH)₂

THEORY:

Ammonium salts when are treated to excess alkali gives off ammonia gas. Ammonia gas is prepared in laboratory by heating the mixture of Ammonium Chloride,NH₄Cl & Calcium Hydroxide,Ca(OH)₂ paste in 1:3 ratio by weight.

The reaction proceeds as,

 $2NH_4Cl + Ca(OH)_2 \longrightarrow 2NH_3 + CaCl_2 + 2H_2O$

The gas so formed is collected in the gas jar by downward displacement of air because ammonia gas is lighter than air.

The gas cannot be collected under water because it is highly soluble in water.

Ammonia gas is dried by passing it through the glass bottle contain CaO(lime tower). Anhydrous CaCl₂ and conc.H₂SO₄ cannot be used as drying agent because they react with ammonia.

LABORATORY DIAGRAM:

PROCEDURE:

- 1. Take a hard glass test tube with rubber cork and delivery tube.
- 2. Mix 1:3 ratio of ammonium chloride and calcium hydroxide and place the mixture into the test tube.
- 3. Tilt the test tube at 30 degree angle and clamp it to the stand.
- 4. Attach the rubber cork to the test tube along with delivery tube connected at one end of the test tube and the other end connected to the glass jar containing CaO. The quicklime is present so as to absorb moisture present in the ammonia gas. Make sure that all the connections are airtight to prevent leakage of ammonia gas.
- 5. Now carefully and gently heat the mixture in the test tube.
- 6. Then collect the ammonia gas in the gas jar by downward displacement of air.

OBSERVATION:

Physical properties

SL.	Experiment	Observation	Inference
1	Color of the gas		
2	Odour of the gas		
3	Collect the gas in a test tube half-filled with water. Shake the test tube vigorously by putting the thumb at its mouth and remove the thumb andobserve the volume of water in the test tube.		

Chemical properties

SI.	Experiment	Observation	Inference
1	A piece of moist red		
	litmus paper is shown to		
	the gas.		
2	Pass the gas into the test		
	tube containing copper		
	sulphate solution for		
	short time.		
3	Pass the gas into the test		
	tube containing copper		
	sulphate solution for long		
	time.		
4	Pass the ammonia gas		
	into the test tube		
	containing nessler's		
	reagent.		

CONCLUSION

Ammonia gas is prepared at lab by using $NH_4Cl \& Ca(OH)_2$. Ammonia gas is basic in nature. It is highly soluble in water.

SAFETY MEASURES

- 1. The apparatus must be airtight.
- 2. The hard glass test tube should be fixed in inclined position towards its mouth in order to prevent crack in it.
- 3. Heat should be provided uniformly.
- 4. The gas jar should be dried.

VIVA-VOCE QUESTIONS

- 1. What is the nature(acidic/basic) of ammonia gas?
- 2. Which reactants are used for preparation of ammonia gas?
- 3. Name the compound used as drying agent in preparation of ammonia gas.
- 4. What happens when ammonia gas is passed through the copper sulphate solution? Name the compounds which lead to the following observations.
- 5. What happens when ammonia gas is passed through nessler's reagent?
- 6. What is the shape of ammonia molecule?
- 7. Explain why ammonium nitrate is not used in the preparation of ammonia gas.

EXPERIMENT-3

AIM OF THE EXPERIMENT

Crystallization of copper sulphate from copper carbonate

Objectives of the experiment:

At the end of this experiment, the students will be able to :

- Know the formula of blue vitrol.
- Know application of and uses of copper sulphate.
- Know laboratory method of preparation of crystallization salt.

APPARATUS REQUIRED:

Beaker	funnel	glass rod
Porcelain basin	tripod stands	wire gauge
Bunsen burner	filter paper	filter stand

CHEMICALS REQUIRED:

- Calcium carbonate (CaCO₃)
- Dilute sulphuric acid (H₂SO₄)

PROCEDURE:

- 1. Take about 60 ml of dilute sulphuric acid in a beaker.
- 2. Add the supplied copper carbonate pinch by pinch with continuos stirring till a small quantity of solid is lift undissolved.
- 3. Heat the resulting solution in a beaker for 2-3 minutes to escape CO₂ gas.
- 4. Cool slightly and filter into the porcelain basin.
- 5. Add a few drops of dilute H_2SO_4 to the filterate inorder to check hydrolysis of salt.
- 6. Concentrate the filterate in the basin by evaporation through heating with constant stirring till a drop of solution forms crystal on the the glass rod by blowing air into it from mouth.
- 7. Remove the basin from the flame and allow to cool slowly at room temperature for about happen an hour without disturbing the basin during cooling.
- 8. Decant the mother liquor to separate blue crystals of copper sulphate.
- 9. Dry the crystals in the folds of the filter paper.

Filtration of solution

Concentrating the filtrate

Testing the crystallization point

RESULT:

- 1. Colour:
- 2. Texture and shape:
- 3. Yield: Gm

SAFETY AND PRECAUTIONS:

- 1. Minimum amount of dilute H₂SO₄ should be used to prepare CuSO₄ solution.
- 2. The filtrate should be made slightly acidic with a few drops of H2SO₄ to prevent hydrolysis of salt.
- 3. The solution should not be treated beyond the crystallization point unless the water of crystallization of the crystal will evaporate and colour of the crystal will not be blue.
- 4. The crystal should not be dried by heating as it results the evaporation of water of crystallization.
- 5. While adding the copper sulphate to H_2SO_4 as the saturation point approaches, it delays the solubility of the solute. So it should be given sufficient time for its solubility

VIVA-VOCE QUESTIONS

- 1. What is the formula of blue vitrol?
- 2. What is the shape of copper sulphate crystals?
- 3. Why dil. Sulphuric acid is added to the mother liquor after filtration?
- 4. What happens when blue vitrol is heated?
- 5. Write down the chemical reaction for preparation of copper sulphate crystals.
- 6. Define the term "cystallization".
- 7. Why a substance is put to crystallization?
- 8. Why is the solution not much concentrated or heated to dryness to get crystals?
- 9. Is the aqueous solution of copper sulphate is acidic, neutral or basic ?

Experiment- 4

Aim of the experiment

Acidimetry: To determine the strength of unknown acid using alkali solution of known strength.

Objectives of the experiment:

At the end of the experiment, the students will able to:

- Calculate the strength of the solution.
- Acquire knowledge about alkalimetry, standard solution, normal solution, different types of indicators.
- Know the difference between alkalimetry and acidimetry.

Apparatus Required

- 1. Burette(50 ml)
- 2. Burette stand with clamp
- 3. Pipette(10 ml)
- 4. Conical flask(100 ml)
- 5. Measuring flask(250 ml)
- 6. White glazed tile

Chemicals required

- 1. Acid solution of unknown strength
- 2. Alkali solution of known strength
- 3. Indicator: methyl orange

Theory

The strength of acid is determined by titrating it against a standard solution of alkali In this titration, methyl orange, a weak base (yellow in the unionised form) is used as an indicator. In this experiment also, the titration follows the usual course, i.e., the proton furnished by the addition of the acid first neutralises alkali solution. When the entire alkali solution is neutralised, the last drop of the acid added from the burette produces the pinkish red colour change, which is the end point. The concentration (strength) of the unknown solution is calculated in g/L. It is calculated from the molarity of the solution. Here, the molarity equation is written as

Base Acid

$$N_1V_1 = N_2V_2$$

where, N_1 and N_2 are the normalities, V_1 and V_2 are the volumes of the base and acid respectively used to neutralise each other.

Procedure

(i) Clean the burette thoroughly, wash it with distilled water and finally rinse it with acid solution. (Always rinse the burette with the solution, which is to be taken in it. Clamp the burette vertically in a burette stand.

(ii) Fill the acid solution solution into the burette through a funnel above the zero mark.

(iii) Remove the air gap, if any, from the nozzle of the burette by running the solution forcefully from the burette nozzle.

(iv) Remove the funnel before noting initial reading of the burette. Also while noting the reading, see that no drop of the liquid is hanging at the nozzle of the burette.

(v) Note the initial reading by keeping the eye exactly at the same level as the lower meniscus of the solution.

(vi) Pipette out 10 mL of alkali solution in a washed and dried conical flask. Always wash the pipette with water and rinse with the liquid to be measured before pipetting out the liquid.

(vii) Add 1-2 drops of methyl orange indicator to the conical flask. The solution becomes straw yellow colour. Place the flask over the glazed tile. Then slowly add the alkali solution till it becomes faintly yellow colour is obtained.

(viii) Now add the alkali solution dropwise, until the colour of the solution just change from faint yellow to faint pink. This is the end point. Note the final burette reading. Repeat the process to get three concordant readings.

Observation

SI. No.	Volume of alkali solution taken in ml(.V _B)	Initial burette reading ml.	Final burette reading ml.	Difference ml.	Volume of acid consumed in ml.(V _A)
1.					
2.					
3.					
4.					

Calculation

We know that, V_AS_A=V_BS_B

Here VA= burette reading(volume of acid)

VB =pipette reading(volume of acid)

$$S_B = N/10$$
 and $S_A = \frac{V_B \times S_B}{V_A} (\frac{N}{10})$

Result

Strength of unknown acid solution = _____(N/10)

Conclusion

From the above titration result, the strength of Unknown acid solution is found to be _____

Precautions

- a. Care should be taken while handling the acid and base.
- b. Always rinse the burette and the pipette with the solution which is to be taken in them.
- c. Remove the air gap if any, from the burette before titration.
- d. Never forget to remove the funnel from the burette before noting the initial reading of the burette and ensure that no drop is hanging from the nozzle.
- e. Always read the lower meniscus for all transparent solutions and upper meniscus for the coloured solutions.
- f. Never use burette and pipette with a broken nozzle.

- g. Never suck a strong acid or an alkali with the pipette, use pipette bulb.
- h. Always keep the lower end of the pipette dipped in the liquid while sucking the liquid.
- i. While transferring the solution to the flask, do not blow out the last drop of the solution from the jet of the pipette.

Experiment- 5

Aim of the experiment

Alkalimetry: To determine the strength of unknown alkali using acid solution of known strength.

Objectives of the experiment:

At the end of the experiment, the students will able to:

- Calculate the strength of the solution.
- Acquire knowledge about alkalimetry, standard solution, normal solution, different types of indicators.
- Know the difference between alkalimetry and acidimetry.

Apparatus Required

- 1. Burette(50 ml)
- 2. Burette stand with clamp
- 3. Pipette(10 ml)
- 4. Conical flask(100 ml)
- 5. Measuring flask(250 ml)
- 6. White glazed tile

Chemicals required

- 1. Alkali solution of unknown strength
- 2. Acid solution of known strength
- 3. Indicator: methyl orange

Theory

The strength of alkali is determined by titrating it against a standard solution of acid. In this titration, methyl orange, a weak base (yellow in the unionised form) is used as an indicator. In this experiment also, the titration follows the usual course, i.e., the proton furnished by the addition of the acid first neutralises alkali solution. When the entire alkali solution is neutralised, the last drop of the acid added from the burette produces the pinkish red colour change, which is the end point. The concentration (strength) of the unknown solution is calculated in g/L. It is calculated from the molarity of the solution. Here, the molarity equation is written as

Base Acid

$$N_1V_1 = N_2V_2$$

where. N_1 and N_2 are the normarities, V_1 and V_2 are the volumes of the base and acid respectively used to neutralise each other.

Procedure

(i) Clean the burette thoroughly, wash it with distilled water and finally rinse it with acid solution. (Always rinse the burette with the solution, which is to be taken in it. Clamp the burette vertically in a burette stand.

(ii) Fill the acid solution solution into the burette through a funnel above the zero mark.

(iii) Remove the air gap, if any, from the nozzle of the burette by running the solution forcefully from the burette nozzle.

(iv) Remove the funnel before noting initial reading of the burette. Also while noting the reading, see that no drop of the liquid is hanging at the nozzle of the burette.

(v) Note the initial reading by keeping the eye exactly at the same level as the lower meniscus of the solution.

(vi) Pipette out 10 mL of alkali solution in a washed and dried conical flask. Always wash the pipette with water and rinse with the liquid to be measured before pipetting out the liquid.

(vii) Add 1-2 drops of methyl orange indicator to the conical flask. The solution becomes straw yellow colour. Place the flask over the glazed tile. Then slowly add the alkali solution till it becomes faintly yellow colour is obtained.

(viii) Now add the alkali solution dropwise, until the colour of the solution just change from faint yellow to faint pink. This is the end point. Note the final burette reading. Repeat the process to get three concordant readings.

Observation

SI. No.	Volume of Alkali solution taken in ml(.V _B)	Initial burette reading ml.	Final burette reading ml.	Difference ml.	Volume of acid consumed in ml.(V _A)
1.					
2.					
3.					
4.					

Calculation

We know that, $V_A S_A = V_B S_B$

Here VA= burette reading(volume of acid)

VB =pipette reading(volume of acid)

$$S_A = N/10$$
 and $S_B = \frac{V_A \times S_A}{V_B} (\frac{N}{10})$

Result

Strength of unknown alkali solution = _____ (N/10)

Conclusion

From the above titration result, the strength of Unknown alkali solution is found to be_____

Precautions

- a. Care should be taken while handling the acid and base.
- b. Always rinse the burette and the pipette with the solution which is to be taken in them.
- c. Remove the air gap if any, from the burette before titration.
- d. Never forget to remove the funnel from the burette before noting the initial reading of the burette and ensure that no drop is hanging from the nozzle.
- e. Always read the lower meniscus for all transparent solutions and upper meniscus for the coloured solutions.
- f. Never use burette and pipette with a broken nozzle.
- g. Never suck a strong acid or an alkali with the pipette, use pipette bulb.
- h. Always keep the lower end of the pipette dipped in the liquid while sucking the liquid.
- i. While transferring the solution to the flask, do not blow out the last drop of the solution from the jet of the pipette.

Viva voce questions

- a. what is volumetric analysis?
- b. What is meant by term titration?
- c. Define titrant and titrate.
- d. What is an indicator.
- e. Name any two indicators mostly in use.
- f. What is standard solution?
- g. What is end point?
- h. Tell the principle of volumetric analysis.
- i. What is normality?
- j. Define acidimetry?

EXPERIMENT-6

Aim of the Experiment :-

Identification of Unknown Acid Radicals.

Objective of the Experiment:-

At the end of this experiment, the students will be able to :-

- a) To know the preliminary list done to identify the acid radicals.
- b) Know the confirmatory tests of negative ions/ acid radicals.

Apparatus Required :-

i.	Test tubes	ii.	Test tube holde
:::	Tast tuba brushas	iv.	Droppor

 lest tube blusiles	1.	Diophei
 Caalaysee	:	Cashula

v. Gas burner vi. Spatula

Chemical Required :-

a. Given Salt b. Various reagents c. Litmus paper

Theory :-

• Salt is defined as a crystalline compound which is formed by complete neutralization of aqueous strong acid with an aqueous strong base.

 $\begin{array}{ccc} \text{NaOH} & + & HCl & \xrightarrow{neutralization} & NaCl & + & H_2O \\ \text{(Strong base)} & & \text{(Strong acid)} & & \text{(Salt)} & & \text{(Water)} \end{array}$

In other words, Salt are crystalline compounds made up of negative & positive ions. The positive part/ cations comes from a base while the negative part/anion comes from an acid.

• **Radical** :- It is one or group of atoms having positive or negative charge over it. Radicals are of two types : Basic radical & Acid radical.

Metals form basic radicals & non-metals form acid radicals. Positively charged ions are called as "basic radicals" & negatively charged ions are called as "acid radicals". The acid radicals prescribed for the diploma engineering (1st/2nd semester) are given below:-

Acid Radicals :- CO_3^{2-} (Carbonate), S^{2-} (Sulphide) Cl⁻ (Chloride), NO_3^{2-} (Nitrate) SO_4^{2-} (Sulphate)

Preliminary Test:-

- a) Colour of the salt ______. (White/Coloured)
- b) Solubility of the Salt ______. (Soluble in water/hot water/ dil. HCl/Conc. HCl)
- c) Structure ______. (crystalline/amorphous)
- d) Odour of the salt ______. (odour/odourless)

Identification of Acid Radicals

The acid radicals have been classified into three groups depending upon their reactions with certain reagents.

Classification of Acid radicals :-

Group I	Anions	Group reagents
I.	CO ₃ ²⁻ , SO ₃ ²⁻ , S ²⁻ , NO ₂ ⁻	Dil. HCl
II.	Cl⁻, Br⁻, I⁻, NO₃⁻	Conc. H ₂ SO ₄
III.	SO4 ²⁻	Dil. HCl + BaCl ₂
	PO4 ³⁻	Conc. HNO ₃ + ammonium molybdate

Test with dil. HCL

Experiment	Observation	Inference	
About 1cc of dil. HCl is added	a. Effervescence tooks	a. CO ₂ gas coming out	
in a clean & dry test tube. To	place with evolution	from carbonate It	
this a pinch of salt is added	of gas (colourless &	may be CO ₃ ²⁻ . Then	
	odourless) which	proceed to lime	
	extinguishes a	water test.	
	burning stick.	b. H ₂ S gas coming out	
	b. Effervescence tooks	from sulphide. It may	
	place with the	be S ²⁻ . Then proceed	
	evolution of	to lead acetate test.	
	colourless gas having	c. CO ₃ ²⁻ , S ² are absent	
	rotten egg smell.		
	c. No effervescence.		

Test with conc. H₂SO₄

Experiment	Observation	Inference
A pinch of salt is taken in a clean & dry test tube. Then 2-3 drops of colc. H ₂ SO ₄ is added to it. Then warm slightly.	 a. Effervescence tooks place with evolution of colourless gas which fumes in moist-air is produces a dense white fumes when a glass rod dipped in conc. NH4OH is shown to the above gas. b. Effervescence takes place with the evolution of brown fumes having pungent smell. Then a few pieces of Cu turning are added & heated. Deep brown vapours are produced & the solution turn green. 	 a. HCl gas is coming out. Cl⁻ may be present. Then proceed to test for Cl. b. It may be nitrate NO₃⁻ . Then proceed to test for nitrate (Brown ring test)

Test for Sulphate (SO₄²⁻)

Experiment	Observation	Inference
 a. About 1ml of salt solution is taken in a clean test tube & it is acidify with dil. HCl. Then BaCl₂ is added 	a. A white ppt is formed.b. Precipitate is soluble.	 a. SO₄²⁻ may be present. b. SO₄²⁻ is confirmed.
to it. b. A little of the above ppt is taken in a test tube. To it conc. HCL is added & boiled		

Reaction of SO₄²⁻:-

Na₂SO₄ + BaCl₂ → NaCl + BaSO₄

Test for Carbonate (CO₃²⁻)

Experiment	Observation	Inference
a. About 1cc of dil. HCl	a. Effervescene takes	a. CO ₃ ²⁻ may be
is taken in a test	place with evolution	present.
tube. It is gently	of colourless &	b. CO_3^{2-} is confirmed.
warmed & little salt is	odourless gas.	
added to it.	b. At first white	
b. A little more salt is	turbidity(milk color)	
added to the above	appears which	
test tube & evolved	disappears with	
gas is passed through	excess passing of the	
the lime water with	gas.	
the help of a delivery		
tube.		

Reaction of CO₃²⁻:-

 $Na_{2}CO_{3} + 2HCI \longrightarrow 2NaCI + CO_{2} + H_{2}O$ $Ca(OH)_{2} CO_{2} \longrightarrow CaCO_{3} + 2H_{2}O$ $CaCO_{3} + H_{2}O + CO_{2} \longrightarrow Ca(HCO_{3})_{2}$

Test for Sulphide (S²⁻)

Experi	ment	Obser	vation	Inferei	nce
a.	A pinch of salt is taken in a clean & dry test tube. About 2ml of dil.HCl/H ₂ SO ₄ is added to it. Then it is warmed.	a.	Effervescene takes place with evolution of colourless gas having rotten egg smell. Na ₂ S + H ₂ SO ₄ Na ₂ SO ₄ + H ₂ S	a.	H ₂ S gas is coming out from sulphide.
b.	A filter paper is soaked with lead acetate soln. is shown to above gas.		Na₂S + 2HCI → 2NaCl +H₂S	b.	S ²⁻ is confirmed due to formation of PbS.
		b.	The filter paper turned black due to formation of PbS. (CH ₃ COO) ₂ Pb + H ₂ S		
			PbS + CH ₃ COOH		

Test for nitrate (NO₃)

Experiment	Observation	Inference
 A pinch of salt is taken in a clean & dry test tube & to it a piece of Cu turning are added. Then 4-5 drops of conc. H₂SO₄ is added to the mixture & heated. 	a. Copious brown fumes are evolved.	a. This is due to formation of NO ₂ gas.
 b. Brown ring test About 2ml of salt solution is taken in a testube. To it equal volume of conc. H₂SO₄ is added. Then the test tube is cooled perfectly under tap water. Then slowly add freshly prepared ferrous sulphate solution through the side of the test tube. 	b. A brown ring is obtained at the junction of the two liquid. FeSO4 + NO \longrightarrow FeSO4.NO KNO ₃ + H ₂ SO4 \longrightarrow KHSO ₄ + HNO ₃ 6FeSO ₄ + 2HNO3 + 3H ₂ SO ₄ \longrightarrow 3Fe ₂ SO ₄ + 2NO + 4H ₂ O FeSO4 + NO + 5H ₂ O \longrightarrow [Fe(H ₂ O) ₅ NO]SO ₄	b. Nitrate is confirmed.

Test for Chloride(Cl⁻)

Experi	ment	Observation	Inference
a.	A pinch of salt is	a. Effervescene takes	a. Cl ⁻ may be present.
	taken in a clean & dry	place with the	
	test tube. Then 3	evolution of the	
	drops of conc. H ₂ SO ₄	colourless gas which	
	is added by the side	fumes in moist air.	
	of the test tube.	b. Dense white fumes	
b.	A glass rod dipped in	are produced.	
	conc. NH₄OH is	NH₄OH + HCI → NH₄CI +	
	shown to the above	H ₂ O	b. Chloride may be
	test tube.		present.
с.	1cc of salt solution is	c. Curdy white	c. Chloride may be
	prepared in a clean	precipitate is formed.	present.
	and dry test tube &		
	the solution is		
	acidified by adding		
	0.5ml of dil. HNO3.		
	Io this test tube		
	silver nitrate solution		
	is added & shaken		
	well.		
d.	(a) The above ppt. Is		
	allowed to stand &		
	off The part is		
	on. The ppt. is		
	washed 5 times with water & divided into		
	2 parts		
	Dart-1. To the 1st	i Precinitate doesn't	
	nart dil HNO $_{2}$ is	dissolves	
	added & heated	413501763.	
	Part-2.To the 2nd	ii The precipitate	
	nart dil NH₄OH is	dissolves	
	added & shaken well		
	Lades a maner well		
	Part-3:To the 3rd part	iii. The precipitate	
	conc.NH ₄ OH is added.	dissolves.	
	Drop by drop with		
	shaking.		
	(b) To part-2 & part-3	(b) The precipitate	d. Chloride is confirmed.
	test tube dil.HNO3 is	reappears.	
	added.		NaCl + AgNO3—►AgCl +
			NaNO3
			AgCl + HNO ₃ → no change
			AgCl + NH₄OH
			[Ag(NH ₃) ₂ Cl](diammine silver
			choride)
			<u> </u>

<u>ŗ</u>		

EXPERIMENT-7

Aim of the Experiment :-

Identification of Unknown Basic Radicals.

Objective of the Experiment:-

At the end of this experiment, the students will be able to :-

- c) To know the preliminary list done to identify the basic radicals.
- d) Know the confirmatory tests of positive ions/ basic radicals.

Apparatus Required :-

	i. Test tubes	ii.	Test tube holder
iii.	Test tube brushes	iv.	Dropper
v.	Gas burner	vi.	Spatula

Chemical Required :-

b. Given Salt b. Various reagents c. Litmus paper

Theory :-

• Salt is defined as a crystalline compound which is formed by complete neutralization of aqueous strong acid with an aqueous strong base.

 $\begin{array}{ccc} \text{NaOH} & + & HCl & \xrightarrow{neutralization} & NaCl & + & H_2O \\ \text{(Strong base)} & & \text{(Strong acid)} & & \text{(Salt)} & & \text{(Water)} \end{array}$

In other words, Salt are crystalline compounds made up of negative & positive ions. The positive part/ cations comes from a base while the negative part/anion comes from an acid.

• **Radical** :- It is one or group of atoms having positive or negative charge over it. Radicals are of two types : Basic radical & Acid radical.

Metals form basic radicals & non-metals form acid radicals. Positively charged ions are called as "basic radicals" & negatively charged ions are called as "acid radicals". The acid radicals prescribed for the diploma engineering (1st/2nd semester) are given below:-

Basic Radicals :- $Zn^{2+}(zinc ion), Na^{+}(sodium ion), Mg^{2+}(magnesium ion), NH^{4+}(ammonium ion), Al^{3+}(aluminium ion), Ca^{2+}(calcium ion), K^{+}(potassium ion).$

Preliminary Test:-

- a) Colour of the salt ______. (White/Coloured)
- b) Solubility of the Salt ______. (Soluble in water/hot water/ dil. HCl/Conc. HCl)
- c) Structure ______. (crystalline/amorphous)
- d) Odour of the salt ______. (odour/odourless)

A. Dry test for Basic Radicals

1. Dry test tube heating

Experiment	Observation	Inference
A pinch of		a. May be crystalline salts.
salt is taken	a. The salt decrepitates(producing	b. May be alkaline or alkaline
in a clean &	cracking sound).	earth metals salts.
dry test	b. The salt melts on heating &	c. It is volatile salt.(soda lime
tube. The	solidifies on cooling.	test to be performed).
test tube is	c. The salt volatizes out completely	d. It may be aluminium salt.
held by a	forming a white sublimate.	e. It may be Mg ²⁺ ,Sn ²⁺ /alkaline
test tube	d. The salt swells on heating.	earth metals.
holder. It	e. A white infusible incandescent	f. (i) May be Zn salts.
was first	mass is left.	(ii) May be Pb
heated	f. The salt changes its colour.	salts.
gently &	(i) yellow when	
then	hot & white	
strongly	when cold.	
heated for	(ii) Yellow when	
5 mins in	hot & cold.	
non-		
luminuos		
flame.		

2. <u>Soda lime test(This test is performed for volatile salts)</u>

Experiment	Observation	Inference
A pinch of salt is taken in a watch glass & a little amount of soda	A colorless gas having smell of ammonia evolves.	May be NH4 ²⁺ ammonium salts.
lime(CaO+NaOH) & one or two drop of water is added to it. Then it is		
rubbed with the fingertips.		

3. Charcoal cavity test

Experiment	Observation	Inference
A little of the salt is taken	a. The salt	a. May be crystalline
in the charcoal cavity & it	decrepitates(cracking	salt(perform flame
is moistened by one or	sound).	test).
two drops of water. Then	b. The salt	b. May be NO₂ ⁻ ,NO₃ ⁻ salt.
it is heated by oxidising	deflagrates(catches	c. May be alkaline

4. Cobalt nitrate test

Experiment	Observation	Inference
A drop of cobalt nitrate solution is added to the	a. Blue mass is obtained.	a. May be Al ³⁺ .
infusible incandescent residue obtained from	b. Green mass is obtained.	b. May be Zn ²⁺ .
the charcoal cavity test. Then it is heated in the	c. Pink mass is obtained.	c. May be Mg ²⁺ .
non-luminous flame for 2 minutes.	d. Grey mass is obtained.	d. May be Ca ²⁺ .
		Flame test to be performed.
Then it is heated in the non-luminous flame for 2 minutes.	c. Prink mass is obtained.d. Grey mass is obtained.	d. May be Kig . d. May be Ca ²⁺ . Flame test to be performed

5. Flame test(this test is performed for alkali [Na⁺,K⁺] or alkaline earth metal[Ca²⁺,Ba²⁺,Sr²⁺)

Experiment	Obse	rvation	Inference
A nichrome wire is rubbed with sand paper. Then it is strongly heated in a non- luminous flame of the burner & at once dipping it in conc. HCl acid & touch it with a little of the powdered salt. Now heat it in non-luminous flame & the colour of the flame is noted.	Colour observed in naked eye a. Golden yellow b. Brick red c. violet	Colour through double blue glass a. colourless b. not to be viewed c. crimson red.	a. May be Na+. b. May be Ca2+. c. May be K+.

B. Wet test for Basic Radicals

For the identification of basic radicals by wet tests, they have been classified into six groups depending on their reactions in solution with different reagents. A list showing the groups, basic radicals & group reagents is given below.

As³⁺,Sb³⁺,Sn²⁺ or Sn⁴⁺

Classification of Basic radicals :-

Group I	Anions
l.	 Pb²⁺,Ag⁺,Hg₂²⁺
IIA.	 Hg²⁺,Bi²⁺,Cu²⁺,Cd²⁺
IIB.	As ³⁺ ,Sb ³⁺ ,Sn ²⁺ or Sn ⁴
IIIA.	 Fe³⁺,Al³⁺,Cr³⁺
IIIB.	• Co ²⁺ ,Ni ²⁺ ,Zn ²⁺ ,Mn ²⁺
IV.	• Ca ²⁺ ,Ba ^{2+,} Sr ²⁺
V.	 Mg²⁺,NH₄⁺,Na⁺,K⁺

Group reagents

- Dil. HCl
- H₂S in presence of dil.HCl.
- NH₄OH in presence of NH₄Cl.
- (NH₄)₂CO₃ in presence of NH₄Cl & NH₄OH.
- No particular reagents.

Experiment	Observation	Inference
About 1ml of salt solution is taken in a given test tube & dil.HCl is added.	 a. White precipitate is formed. The above precipitate formed is then boiled, the ppt. is soluble & reappeared on cooling. b. No white ppt. is 	a. Pb2+ may be present.
	formed.	b. Grp-I radicals are absent.

1. <u>Wet test for Group-I radicals[Pb²⁺,Ag⁺,Hg₂²⁺)</u>

2. <u>Wet test for Group-IIA radicals: [Pb²⁺,Cu²⁺,Hg²⁺] & Group-IIB radicals: [As³⁺, Sn²⁺, Sb³⁺]</u>

Experiment	Observation	Inference
About 2ml of salt solution is taken in a given test tube & dil.HCl is added. Then H ₂ S gas is allowed to pass through it.	Black ppt. is formed.	Group II may be present.
	No black ppt. is obtainted	Group-II radicals are absent.

Experiment	Observation	Inference
To 2ml of salt solution, solid NH4Cl is added till solution is saturated then dil. NH4OH is added till alkaline.	Gelatinous white ppt. is formed.	Group II may be present.
	No ppt. is obtainted	Group-II radicals are absent.
Test for Aluminium(Al ³⁺)		
 To 1ml of salt solution, solid NH₄Cl is added till solution is saturated then dil. NH₄OH is added till alkaling 	 Gelatinous white ppt. is formed. 	1. Al3+ may be present.
 2. 1ml of salt solution is taken in a clean test tube & to it dil.NaOH is added drop by drop till excess. 	 Gelatinous white ppt. is first formed which is soluble inexcess of NaOH. 	2. Al3+ is confirmed.

3. <u>Wet test for Group-IIIA radicals:[Fe^{3+,} Al^{3+,}Cr³⁺]</u>

4.Wet test for Group-IIIB radicals:[Sn²⁺, Mn²⁺,Co²⁺,Ni²⁺,Zn²⁺]

Experiment	Observation	Inference
To about 2ml of salt	white ppt. is formed.	Zn ²⁺ may be
solution, solid NH ₄ Cl is		present.(Confirmatory
added till the solution is		test to be done)
saturated then dil.		
NH ₄ OH is added till		
alkaline & H ₂ S gas is		
allowed to pass through		
it.	No ppt. is obtainted	
		Group-IIB radicals are
		absent.

Test for Zinc(Zn ²⁺)			
About 1ml of salt solution is taken in a clean test tube & to it dil.NaOH is added drop by drop till excess.	White ppt. first formed is soluble when excess of NaOH is added in excess dropwise.	Zn ²⁺ is confirmed.	

5.Wet test for Group-IV radicals

Experiment	Observation	Inference
To about 2ml of salt	A white ppt. is	Ca ²⁺ may be present.
solution, solid NH ₄ Cl is	formed.	
added till solution is		
saturated then dil.		
NH₄OH is added till		
alkaline. Then saturated		
solution of (NH ₄) ₂ CO ₃ is		
added to it.		Group-IV radicals are
	No ppt. is obtainted	absent.
Test for coloium (Co^{2+})		
Test for calcium(ca)		
1. The above white ppt.	White ppt. of CaC_2O_4 soluble	Ca ²⁺ is confirmed.
is dissolved in	in mineral acid but insoluble	
minimum amount of	in CH ₃ COOH is obtained.	
dil.CH3COOH, boiled		
to remove CO ₂ &		
then ammonium		
oxalate soln. is added		
to it.		

6.Wet test for Group-V radicals:[Mg²⁺,Na⁺,K⁺,NH₄⁺]

Experiment	Observation	Inference
Test for potassium(K ⁺)		
About 1ml of salt solution is treated with 2 drops of Co(NO ₃) ₂ soln. followed by the addition of solid NaNO ₂ & dil.CH ₃ COOH.	Yellow ppt. is formed.	K⁺ is confirmed.

	No yellow ppt. is obtainted	K ⁺ is absent.	
Test for magnesium(Mg ²⁺⁾			
 To about 2ml of salt solution, solid NH4Cl is added till saturation. And then dil. NH4OH is added till alkaline & 	1. White ppt. is formed.	 Mg2+ may be present. 	
disodium hydrogen phosphate is also added to it. 2. About 2ml of salt solution is taken in a test tube & dil. HCl is added. Then 2-3 drops of magneson reagent is added. Finally the soln. Is	2. A blue ppt. is obtained.	2. Mg2+ is confirmed.	
made alkaline with NaOH. Test for Ammonium(NH4 ⁺)			
 About 1ml of salt solution is taken in a test tube & to it 5 drops of NaOH soln. is added followed by addition of little Nessler's reagent. 	A brown ppt. is formed.	NH₄ ⁺ is confirmed.	

Viva-voce question

- 1. What is analytical chemistry?
- 2. What is understand by qualitative & quantitative analysis?
- 3. What is salt? What do you mean by acid & basic radical?
- 4. What is an acid?
- 5. What is a base?
- 6. What is an alkali?
- 7. Name the burner which is used in laboratory?
- 8. Why is stoppered bottle used for lime water?
- 9. Is there any other gas like CO2which can turn lime water milky?
- 10.What is brown ring test?

- 11. What are the principles on which separation of basic radicals into groups is based?
- 12. What do you understand by solubility product & what importance it has got in qualitative analysis?
- 13.What is common ion effect?
- 14. Why salts give colour in flame test?