GOVERNMENT POLYTECHNIC, SAMBALPUR, RENGALI

DEPARTMENT OF E&TC ENGINEERING

LESSON PLAN(WINTER-2021)

SUBJECT-DIGITAL ELECTRONICS & MICROPROCESSOR(TH-3) SEMESTER-5TH ELECTRICAL ENGINEERING

NAME OF THE FACULTY- Ms. Sadhana Subhalaxmi

TOTAL NO. OF PERIODS-75(5P/WEEK)

UNIT	DATE	PERIOD	TOPICS TO BE COVERED
			BASICS OF DIGITAL ELECTRONICS
	1 st week of October,2021	1	Binary, Octal, Hexadecimal number systems and compare with Decimal system
		2	Binary, Octal, Hexadecimal number systems and compare
		2	with Decimal system Pinary addition, systemation, Multiplication and Division
		3 4	Binary addition, subtraction, Multiplication and Division
			1's complement and 2's complement numbers for a binary number
		5	Subtraction of binary numbers in 2's complement method.
		6	Use of weighted and Un-weighted codes & write Binary equivalent number for a number in 8421, Excess-3 and Gray Code and vice-versa.
		7	Use of weighted and Un-weighted codes & write Binary equivalent number for a number in 8421, Excess-3 and
1			Gray Code and vice-versa.
_		8	Importance of parity Bit. Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR
		0	gates with truth table.
		9	Realize AND, OR, NOT operations using NAND, NOR
			gates
		10	Different postulates and De-Morgan's theorems in
			Boolean algebra
		11	Use Of Boolean Algebra For Simplification Of Logic
			Expression
		12	Karnaugh Map For 2,3,4 Variable, Simplification Of SOP
		10	And POS Logic Expression Using K-Map.
		13	Karnaugh Map For 2,3,4 Variable, Simplification Of SOP
		1.4	And POS Logic Expression Using K-Map.
		14 15	Previous year questions discussion
		13	Numericals & assignment discussion COMBINATIONAL LOGIC CIRCUITS
		1	Give the concept of combinational logic circuits.
		2	Half adder circuit and verify its functionality using truth
		_	table.
		3	Realize a Half-adder using NAND gates only and NOR
			gates only.
		4	Full adder circuit and explain its operation with truth table.
	3 rd week of	5	Realize full-adder using two Half-adders and an OR – gate
	November,2021		and write truth table

6	Full subtractor circuit and explain its operation with truth
2	table
7	
8	- F · · · · · · · · · · · · · · · · · ·
9	1
10	ξ ,
14	
1:	
1.	SEQUENTIAL LOGIC CIRCUITS
	clocking and edge triggering,
3	
4	
	and explain with truth table
5	
	slave JK flip flop.
3 rd week of	
3 December, 2021	and draw their symbols
7	
8	
9	<u> </u>
10	
	counters
	registers.
11	
	table using flip flop.
14	6 1 1
	table using flip flop.
1:	<u> </u>
	assignment discussion
	8085 MICROPROCESSOR
1	Introduction to Microprocessors, Microcomputers
2	
3	description of each block
4	
5	
6	Stack, Stack pointer & stack top
7	1 / 1
2rd 1 C	
3 rd week of	instruction with example
4 January,2022 9	1
10	Č
1	Fetch Cycle, Machine Cycle, Instruction Cycle, T-State
12	
1	
1.	Timing Diagram for memory read, memory write, I/O read, I/O write
1.	read, I/O write

		16	Simple assembly language programming of 8085
		17	
		18	Previous year questions discussion
		19	Numericals & assignment discussion
		20	Revision Test-2
5	2 nd week of February,2022		INTERFACING AND SUPPORT CHIPS
		1	Basic Interfacing Concepts, Memory mapping & I/O
			mapping
		2	Functional block diagram and description of each block of
		3	Programmable peripheral interface Intel 8255
		4	
		5	Application using 8255: Seven segment LED display,
		6	Square wave generator, Traffic light Controller
		7	
		8	Previous year questions discussion
		9	Numericals & assignment discussion
		10	Revision Test-3