DEPARTMENT OF ELECTRICAL ENGINEERING

SEM- 6TH SEM SESSION- SUMMER 2021-22 SUBJECT- CONTROL SYSTEM ENGINEERING NAME OF THE FACULTY-SASMITA TRIPATHY

SL	WEE	DATE	TOPICS TO BE COVERED	NO OF
NO.	NO			PERIODS
1	1	10.03.2022- 11.03.2022	1. FUNDAMENTAL OF CONTROL SYSTEM 1.1. Classification of Control system	5
			1.2. Open loop system & Closed loop system and its	
			comparison 1.3. Effects of Feed back	
			1.4. Standard test Signals(Step, Ramp, Parabolic, Impulse	
			Functions)	
			1.5. Servomechanism	
			2. MATHEMATICAL MODEL OF A SYSTEM	4
	2	14.03.2022- 19.03.2022	2.1 Transfer Function & Impulse response.	
2			2.2. Properties, Advantages & Disadvantages of Transfer	
			Function 2.3. Poles & Zeroes of transfer Function	
			2.4. Simple problems of transfer function of network.	
			2.5. Mathematical modeling of Electrical Systems(R, L, C,	
	3	21.03.2022- 26.03.2022	Analogous systems)	
3			3. CONTROL SYSTEM COMPONENTS	5
			3.1. Components of Control System	
			3.2. Gyroscope, Synchros, Tachometer.	
	4			
			3.2. DC servomotors, Ac Servomotors.	4
4			4. BLOCK DIAGRAM ALGEBRA & SIGNAL FLOW GRAPHS	
7			4.1. Definition: Basic Elements of Block Diagram	
			4.2. Canonical Form of Closed loop Systems	
			4.3. Rules for Block diagram reduction	
	5		4.4. Procedure for of Reduction of Block Diagram	4
			4.5. Simple Problem for equivalent transfer function	
		04.04.2022-	4.6. Basic Definition in Signal Flow Graph & properties	
5		09.04.2022	4.7. Construction of Signal Flow graph from Block diagram	
			4.8. Mason's Gain formula	
			4.9. Simple problems in Signal flow graph for network	
	6	11.04.2022- 16.04.2022	5. TIME RESPONSE ANALYSIS.	
			5 . 1 Time response of control system.	
			5 . 2 Standard Test signal.	
			5.2.1. Step signal,	4
			5.2.2. Ramp Signal	
			5.2.3. Parabolic Signal	
			5.2.4. Impulse Signal	

			5 . 3 Time Response of first order system with:	
7	7	18.04.2022- 23.04.2022	E 2.2 Unit impulse response.	5
			5 . 4 Time response of second order system to the unit step	
			linnut 5.4.1 Time response specification.	
8	8	25.04.2022- 30.04.2022	5.4.2. Derivation of expression for rise time, peak time, peak	
			overshoot, settling time and steady state error.VI Sem	
			Electrical Page 11 of 28	5
			5.4.3. Steady state error and error constant5 . 5 Types of	
			control system.[Steady state errors in Type-0, Type-1, Type-2	
			system]	
9	9	02.05.2022- 07.05.2022	5 . 6 Effect of adding poles and zero to transfer function.	
			5 . 7 Response with P, PI, PD and PID controller.	4
			6. ANALYSIS OF STABILITY BY ROOT LOCUS TECHNIQUE.	
			6 . 1 Root locus concept.	
			6 . 2 Construction of root loci.	
10	10	09.05.2022- 14.05.2022	6 . 3 Rules for construction of the root locus.	
			6 . 4 Effect of adding poles and zeros to G(s) and H(s).	
			7. FREQUENCY RESPONSE ANALYSIS.	5
			7 . 1 Correlation between time response and frequency	
			response. 7 . 2 Polar plots.	
11	11	17.05.2022- 21.06.2022	7.5 Computation of Gain margin and phase margin.	
			7 . 6 Log magnitude versus phase plot.	4
			7 . 7 Closed loop frequency response.	
100 1 14			7 . 3 Bode plots.	
12	12	23.05.2022-	7 . 4 All pass and minimum phase system.	5
		28.06.2022	8. NYQUIST PLOT	
			8.1 Principle of argument.	
13	13	30.05.2022- 04.06.2022	8.2 Nyquist stability criterion.	
			8.3 Niquist stability criterion applied to inverse polar plot.	
			8.4 Effect of addition of poles and zeros to G(S) H(S) on the	5
			shape of Niquist plot.	
			8.5 Assessment of relative stability.	
14	14	06.06.2022- 10.06.2022	8.6 Constant M and N circle	
			8.7 Nicholas chart.	5
			REVISION	

fore Minegel 09/03/22 H.O.D (ELECTRICAL)